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This column continues the excellent series of articlcs on the 
geometry and comparisons of dual-reflector antennas by 11 is not nccessary to review his earlier articles, in 1998, 
Christophe Granet. His earlier contributions, in 1998, provided because the article below stands alone. The displaced-axis reflector 
readers with equations to determine the parameters of dual-reflec- is a compact antenna, suitable for communication antennas. It has 
tor antennas, which I recommend yon review and make a part of high efficiency and a compact geometly. Christophe provides us 
your design toolbox. I will still send you the FORTRAN sourcc equations for geometries other than the one presentcd in 1997. 
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1. Abstract 

A simple procedure for the design of classical displaced-axis 
dual-reflector antennas is given. Using four geometric input 
parameters, a set of equations is derived to find the remaining 
geometric parameters, fully defining the systems. This inilial 
geometry provides a good starting point for any optimization proc- 
ess. 

2. Introduction 

he standard displaced-axis dual-reflector antcnnas are special T cases of the Gregorian or Cassegrain systems, in which the 
focal axis of the main parabolic reflector is displaced from the axis 
of symmetry. Thc prime focus of thc elliptical or hyperbolic subre- 
flector is also located on this axis, and not on the axis of symmetry 
[1-4]. 

A dual-reflector antenna system can bc described using a 
finite sct of simple geometric parameters [ 5 ] .  The geometric 
parameters necessary to design circularly-symmetric displaccd-axis 
dual-rcflector antennas are presented in this paper, using four input 
parametcrs. In this paper, only classical systems are presented: no 
special shaping of the reflectors is taken into account. 

There are four options available: 

Option 1: a displaced-axis Gregarian antenna with a single off- 
set (sec Section 5.1). 

Option 2: a disphccd-axis Gregorian antenna with a donble 
offset (see Section 5.2). 

Option 3: a displaced-axis Cassegrain antcnna with a single 
offsct (see Section 6.1). 
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Option 4: a displaced-axis Cassegrain antenna with a double 
offset (sec Section 6.2). 

By single offset, we mean that the distance between the bottom of 
the half-suhreflector used and the bottom of the half-main-reflector 
used is of the order of I x (Ds /2 )  (as in Figures 1 and 4), while for 

a double offset, it is of the ordcr of 2 x (D, 12) (as in Figures 3 and 
6). 

3. General geometry of a displaced-axis dual-reflector antenna 

In a dual-reflector configuration, it is customary to define the 
main reflector and subreflector in their own coordinate systems, 
( OMI<, ~ M R  , YMR ZMR 1 and ( 0.w. X,m , Y m  , ZsR ), respectively, 
and to have a general antcnna coordinate system ( G  , X I  Y , Z ) in 
which the main reflector and subreflector are finally expressed. 
Note that in lhe four antenna arrangemcnts we are proposing, 
OM,{ = O,yR = 0 

As for the classical Cassegraiii and Gregorian systems [ 5 ] ,  we 
are dcaling with a systcm of eight parameters defining the overall 
geometry of the antenna, namcly: D,,,, F ,  D,, O,, L,,, L,?, a ,  
and .f , where (see Figures I to 6): 

D,,, : diameter of the main parabolic reflector 

E : iocal distance of the main reflector 

D, : diameter of the subreflector (elliptical or hyperbolic) 

0, : angle between lhe Z axis and the ray emanating from thc 
focus, Po, oithe antcnna in the direction of the suhrcflector 
edge 

Lm : distance between the focus, fl1, of the antcnna and the 
projection of the bottom-edge of the half-main-reflector onto 
the 2 axis 

Figure 2a. A cross-sectional view of the elliptical-subreflector 
coordinate system with its parameters. 
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Figure 2b. The distance relationship in an ellipse. 

Figure 1. A cross-sectional view of a single-offset Gregorian 
displaced-axis dual-reflector antenna. 

Figure 3. A cross-sectional view of a double-offset Gregorian 
displaced-axis dual-reflector antenna. 



Figure 4. A cross-sectional view of a single-offset Cassegrain 
displaced-axis dual-reflector antenna. 

L, : distance hetween thc focus, Fo , ofthe antenna and the apex 
of the subreflector 

n and f : parameters defining the geometry of thc subrcflcctor 

These parameters, however, cannot he specified arbitrarily. We 
choose four input parameters to define the antenna, namely, ]Irn, 

17 , D,? and 0, , and then calculate from these lhe other design 
parameters in closed form. 

Other intermediate geometric parameters, used in finding the 
rcmaining four parameters (L,,,, L,, (1 and f )  and defining the 
dual-rcflector geometry, are: 

66 /E€€ Antennas and Propagation Magazine, Vol. 41, No. 6, December 1999 

: offset angle between the main-reflector coordinate systcm 
and the subreflector coordinate system (the angle between 

(0, Z,, and (0 A, 1) 

y :  angle from the axis orthe main reflcctor to the top cdgc of 
the main reflector in the main-reflector coordinate system 

S : angle from the axis of thc main reflector to the bottom edge 
of the main reflcctor in the main-rcflector coordinate system 

d : offset parameter for designing the antcnnas for Options 2 ,3 ,  
and 4. 

For lhe definition of the main-reflector geometry, wc consider only 
the upper part of the (O,X,,l , Z M R )  planc. The main-reflector 
profile, z,,~, (xJ,,, ) , depends on the rcal parametcr F , and is of the 
form 

with 

Figure 5. A cross-sectional view of the hyperbolic-subreflector 
coordinate system with its parameters. 

Figure 6. A cross-sectional view of a double-offset Cassegrain 
displaced-axis dual-reflector antenna. 

(Option 3) D +2d  L !dZ  g x,,gr 5 I)/ 
2 2 %  

(Option 4) D,,, + D, i 2d 
2 

D,v + d 9 x"!, < 

The subreflector profile, zsr (+), is defined in the (0, A',, , ZsR ) 
plane, and depends on the two real parameters a and f ,  It is of 
the form 

We have three possibilities: 

M a  <.f : In this case, zl. represcnts a hyperboloid with axis of 
symmetry about the Z,sR axis, and with a focus at the origin of 



coordinatcs. Thc paramcter f is half the distance between the 
focus and its image, and a is half the distance between the 
hyperboloid and its image, mcasured along the Z,7R axis. The 

ecccnlricity is L‘ = -. 

The distance relationship in an ellipse gives [6] (see Figures 2a 
and 2b): 

f Ilr~~Il +ll~p/I = 2a 
a 

The distance relationship in a hyperboloid gives [6] (see Fig- 
ure 5 ) :  a > f >0: In this case, z , ? ~  reprcsents an ellipsoid with axis of 

symmetiy about thc Z,?, axis, and with one focus at the origin 
of coordinates. The parameter f is half the distance betwccn 
the foci, and n is half the major axis of the ellipse. The eccen- 

lricity is e = - ,  f 

Il~OPll -lI~Pll= 20 

5. Displaced-axis Gregorian antennas 

5.1 Option 1: Single-offset Gregorian 
a 

a = 0 : In this casc, zg. represents a plane parallel to the (X,?, , 
YFR) plane, with all zsr coordinates equal to - f Figure 1 shows the geometry of the antenna. To understand 

how this geometry has been derived, we start with the cross-section 
of a Grcgorian dual-reflector antcnna. The main reflector is para- 
bolic, and the subreflector is a portion of an ellipse. The two foci of 
the subreflcctor are located at the focus of the main reflector and at 
the phase-center of the fced. In a Gregorian system, the rays emit- 
ted by thc feed are inverted, so that the lower portion of the subre- 
flector reflects the incident rays to the upper section of the main 
reflector. 

The points defining the subreflector are such that s~~ is 
expressed in the main-reflector coordinate system, 

-9‘ [X~,.ll?rpres.~ed i t /  !lie MR cuordmorr ~yricai ‘ (Option 

U + 2 d  <3 

(Oplions 3 and 4) 

It is then casy to express the suhreflector in fhe main-reflector 
coordinate system using the angle $, and to then express both 
iiiaiii reflector and subreflector in the antenna-coordinate system 
( G ,  X , Y  ,Z). The only task remaining is to consider the antenna 
to have a circularly-symmetric shapc, i.e., to mtatc the geometry 
around the ( G , Z ) axis. 

‘ ’ l ~ ~ ~ ~ l ~ x p r e . ~ s c d  1,, ihc MR cnnrd imc sysiee - 

Most of the work in this section is based on [l]. From the 
four input parameters (D,,, , Ir , /I,, and Oe), and using the fact 
that the path length is tlie same for any ray from the focus to the 
aperture, along with formulas related to paraboloid, hyperboloid, 
and cllipsoid [61, we find 

(4) 

( 5 )  

(6) 
D 4. Properties of displaced-axis dual-reflector antennas 

In these arrangements, the main reflector will have a focal 
ring instcad of a focal point. The subreflector will also have a focal 
ring, with one focus lowted at the focal ring of thc main reflector, 
and the other at the focus of thc antenna (the phasc center of thc 
feed). 

f =+ 4 sin($)’ 

(7) 
8F(JA,D,,-Ds) 

(D7,2 -D,)*-IBF2 ’ 
tan(y) = 

(8) 
1, =Zfcos($)+- D,s 

Because of the displaced-axis geometry, thcre is no blockage 
by thc subreflcclor, and this property also improves the feed mis- 
match caused by the reflections from the subreflector. It also per- 
mits the use of a sinaller subrcflector in closc proximity to the feed, 
reducing rear radiation because of the small F/D,,8 ratio [2]. 

2 t an ( r )  ’ 

(9) 
n cos(8,)+1 +[ ]+ m 
8 sin(Oe) 2 ( 4 ,  -Us) ’  

In desiglling anlennas, we are using We have now defined all tlie parameters necessary to represent the 
displaced-axis Grcgorian singlc-offset dual-reflector antenna sys- 
tern (note that d = 0 and S = 0). 

of CassegrainlGregorian systems: 

For each system, the path length is the same for any ray from 
the focus, Fa, io the aperture, i.e., nsing the exlreme rays, we 
have (see Figures 1 , 3 , 4  and 6): 5.2 Option 2: Double-offset Gregorian 

The geometly of such a system is shown in Figure 3, where a 
parabolic main reflector is used in conjunction with an elliptical Ih91~+119QdI+llQiR11~ 1I~oP2l~+11”2Q2~l~-~~Q2R211 (3) 
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Table 1. Option 2: The coordinates of the points for the 
double-offset Gregorian system. 

RI 

I I 

0, - 2d 2 tan(Q,) 

e 0 " 

R, 0, - 2d 0 __ 

subreflector in a double-offset arrangement. The input parameters 
are again D,n, F , LJT, and 6, , and we will cxpress the remaining 
design parameters in terms of these input parameters. 

The ray-tracing in this system (see Figure 3) is given by 
Equation (3). For this option, the coordinates of the points Fo, 9, 
P2, Q, , Q2, R, , and R2 in the (0 ,  X, , ZMR) coordinate system 
are given in Table 1. Using Equation (3) and the coordinates of the 
points in Table 1, we find a function, r , which depends only on 
the variable d (and uses 0, , 0, , F , and 0, ). 

The first step of the design is then to solve the equation 

r ( d )  = llFo411+ IiWll+ / le iRi I I - I~~o~zl l - I I~~QzII  -1lQ2R211= 0 
(10) 

with a simple solver, and to use the root, d ,  of r in the following 
relations (see Figure 3): 

R2 0 ,  +2d ___ 
2 

8F(Dm - 2 d )  

16F2-(D,, -2d)" 
tan(y) = 

0 

(13) 
( D s - 2 d ) 2  1 6 ~ f F ~ - d ( D ~ - Z d ) ~  

L,=F- + 
16F  8F(D,? -Zd)  -'" 

a=&+S D +2d 
4sin(&) 4s in(y) '  

tan($)= 8dF(DV-2d) (15) 

8F(DA - 2 d ) L ,  -16dF2+d(D,  - 2 d ) ,  ' 

8 F ( D , ? - 2 d )  

16F2- (D,  - 2 ~ 1 ) ~  
t an(6)=  

We havc now defined all the parameters necessary to repre- 
sent the displaced-axis Gregorian double-offset dual-rcflector 
antenna system. 

6.  Displaced-axis Cassegrain antennas 

6.1. Option 3: Single-offset Cassegrain 

The geometry of such a system is shown in Figure 4, where a 
parabolic main reflector is used in conjunction with a hyperbolic 
subreflector in a single-offset arrangement. The input parameters 
are again D,,, , F ,  D, , and l?,, and we will express the remaining 
design paramcters in terms of these input paramcters. 

For this option, the coordinates o f  the points Fo, 4 ,  P2, Q, , 
Q 2 ,  R I ,  and R2 in the ( 0 ,  X,, , ZM8) coordinate system are 
given in Table 2. From Equation (10) we can then define r, and 
use the root, d , of r in the following relations (see Figure 4): 

Table 2. Ootion 3: The coordinates of the points for the single- 
offset Cassegrain system. 

D +2d 

n.. + 2d 

I L 
D,+2d 2tan(Q,,) 
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Table 3. Option 4: The coordinates of the points for the 
double-offset Cassegrain system. 

( D , + 2 d ) Z - ( D n , + 2 d ) Z  16F2Ds+U,(D,+2d)2  
, (19) - 

16E lGF(D, + 2 d )  

d[16FZ t ( D ,  +2d)’] 
(20) 

L a=--”-  
2 1 6 F ( D , + 2 d )  ’ 

8F(D,y + 2 d )  
t an(8)=  

16F2 - (D, + 2 4 2  ’ 

1 6 F 2 - ( I ) + 2 d ) 2  - Ls + (2a -L,)cos(S), (22) 16F r,, = 

(note that $4 < 0), (23) 
d 

tan(#) = - 
L.9 + (L,v - 2a)cos (8) 

We have now dciined all the paramcters necessav to represent the 
displaced-axis Cassegrain single-offset dual-refleclor antenna sys- 
tem. 

6.2. Option 4: Double-offset Cassegrain 

The gcometry of such a system is shown in Figure 6, where a 
parabolic main reflector is used in conjunction with a hyperbolic 
snbrcflector in a double-offset auangcment. The input parameters 

Figure 7. The antenna geometry of option 1: U ,  =8m,  
F=4.7m, I,, ,=3.2506m, D s = l . 2 m ,  Ls=2.1702m, d=Om, 
a=1.554m, ,f’=0.7843m, 0,=15’. 

x ( m l  
- 2  ?- I- 

, 

.. 

Figure 8. The antenna geometry of option 2: U, =Em,  
F=4 .1m,  L,,,=3,1382m, DS=1.2m, Ls=2.4204m, 
d=0.0941m,u=1.6488m, f =0.7755m, 0,=15’. 

Figure 9. The antenna geometry of option 3: 0,” =8m, 
F =4.7m, L,n = 1.7698m, D, = 1.2m, Ls = 2.12561~1, 
d=0.119Gm,a=0.6697m, f =1.4525m,8e=150. 
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Figure 10. The antenna geometry of option 4: U,, =Sm, 
17 =4.7m, L,n = 1.4802n1, 0, = 1.2m, L, = 2.4848111, 
d=0.2787m,u=.7051m, f =1.6127m, 0,=15'. 

70 

Figure 11. The C I T  comparison. 
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Figure 12. The radiation patterns at 3.80 GHz. 
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arc again D,,, , F , D, , and Se, and we will express the remaining 
design paranicters in terms of these input parameters. 

For this option, the coordinates of the points Fo,  4 ,  P,, Q,, 
8, R , ,  and R, in the (0,XMR,ZM,*) coordinate system are 
given in Table 3. From Equation (IO), we can then define I’, and 
use the root, d , of 1’ in the following relations (see Figure (1): 

, 
- 

8P (D,# + 0, + 2 d )  
tan(y) = 

16172-(D,,,+D,+2d)Z’ 

U, [ 4F2 + (Ds + 2 d ) 2 ]  
L, =A + 

Zsin(0,) 4F(D,+d)  

d[4F2 + (D, + d ) 2 ]  
(27) a=-- Us 

4sin(B,) 8F(D,+d)  ’ 

4 F ( D ,  + d )  
ian(8) = 

4 F z - ( D , + d ) 2 ’  

(4 +d)*  ~~ L,,, = F - __ - 
4 F  

2 P ( D S + 2 d )  
(note that 4 I tan(#) = - 2 4 F 2 - ( D , + d )  -4FL,n 

7. Examples 

Examples of dual-reflector antennas, designed using the dif- 
ferent options, are presented in Figures 7 to 10 for Options 1 to 4. 
These four antennas have been designed using the same input 
parameters,i.e., D,=8m,  F = 4 . 7 m ,  Ds=1.2m,and 0,=15’. 
These four antennas have been analyzed over the 3.4-4.2 GHz 
band, and compared with equivalent classical Cassegrain and 
Gregorian systems in terms of G I T  (see Figure l l ) ,  radiation 
pattern (see Figure IZ), and feedisubreflector return loss (see Fig- 
ure 13). The main conclusion of this brief analysis (using Physical 
Optics on both reflectors, and assuming a theoretical Gaussian 
feed) is that displaced-axis systems offer better GIT and 
feedsubreflector return-loss performance. On the other hand, the 
radiation pattern first sidelohe for the four designs considered is 
higher than for the equivalent classical Cassegrain or Gregorian 
systems. 

8. Conclusions 

An easy procedure has been presented for the design in Geo- 
metrical Optics of displaced-axis dual-reflector antennas. Four 
options are available to the antenna designer. The main advantage 
ofthesc antennas is that there is no blockage (from the Geometrical 
Optics point of view) by the subreflector, and no or very little 
energy is radiated back to the fced aperture by the subreflector. 
These antennas can be very useful for designing small antennas (in 
terms of wavelength), where the lack of subreflector-blockage can 
he a prime consideration. 
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